World Wide Web Conference 2012

New Objective Functions for Social Collaborative Filtering

Joseph Noel, Scott Sanner, <u>Khoi-Nguyen Tran</u>, Peter Christen, Lexing Xie, Edwin Bonilla, Ehsan Abbasnejad, Nicolas Della Penna

The Australian National University (ANU) National ICT Australia Ltd (NICTA) and ANU

linkr.anu.edu.au

Overview

- Problem: Social Recommendation
- Current Solutions
- New Solutions
- Live Facebook User Trials and Results
- Conclusions and Future Work

THE PROBLEM

The Problem

- Internet: vast amount of content
 - 800+ million Facebook users
 - Average 300 friends on Facebook
- How to find personal interests ?
 What do you like ?
- (Social) Recommendation
 - What would you like ?
 - How to exploit social networks ?

Recommendation

• Predict missing from observed ratings?

Social Recommendation

• Adds indirect social context to users

CURRENT SOLUTIONS

Content-based Filtering (CBF)

Predict like / dislike directly from features

Collaborative Filtering (CF): KNN

• No features? k-nearest neighbor, e.g., k=2

Collaborative Filtering: PMF

• Or low k-rank matrix factorization, e.g. k=2

Stern, Herbrich, Graepel, WWW-09

Features in CF: Matchbox

NEW SOLUTIONS

Objective Framework

$$\min_{\mathbf{w}, U, V} Obj = \sum_{i} \lambda_{i} Obj_{i}$$

Prediction objectives and regularizers to constrain learning.

Standard Error Objective

$$Obj_{pmcf} = \sum_{(\mathbf{x}, \mathbf{y}) \in D} \frac{1}{2} (R_{\mathbf{x}, \mathbf{y}} - [\sigma] \mathbf{x}^T U^T V \mathbf{y})^2$$
 Other predictors aside from MF?

Standard Regularizers

 $Obj_{rw} = \frac{1}{2} \|\mathbf{w}\|_2^2 = \frac{1}{2} \mathbf{w}^T \mathbf{w}$

 $Obj_{ru} = \frac{1}{2} ||U||_{\text{Fro}}^2 = \frac{1}{2} \operatorname{tr}(U^T U)$

$$Obj_{rv} = \frac{1}{2}\operatorname{tr}(V^T V)$$

This is **first proposal**... **feature-based S.R.**

Other social regularizers?

Social Regularizers

$$Obj_{rs} = \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} (S_{\mathbf{x},\mathbf{z}} - \langle U\mathbf{x}, U\mathbf{z} \rangle)^2$$

Proposal 1 ¹/₂

Use interactions to learn latent spectral projection of user and features

$$Obj_{rss} = \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} S_{\mathbf{x},\mathbf{z}}^{+} \|U\mathbf{x} - U\mathbf{z}\|_{2}^{2}$$
$$= \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} S_{\mathbf{x},\mathbf{z}}^{+} \|\mathbf{U}\mathbf{x} - U\mathbf{z}\|_{2}^{2}$$

Proposal II

- Directly model information diffusion

$$Obj_{phy} = \sum_{(\mathbf{x}, \mathbf{y}) \in D} \frac{1}{2} (R_{\mathbf{x}, \mathbf{y}} - [\sigma] \mathbf{w}^T \mathbf{f}_{\mathbf{x}, \mathbf{y}} - [\sigma] \mathbf{x}^T U^T V y)^2$$

Features such as:
Did user z (a friend of x),
also like y?

Proposal III

- Exploit the fact that users have common interests in restricted areas
 - Use co-preferences $P_{x,z,y}$
 - Did users x and z (dis)like item y?

Reweight user regularization according to latent dimensions for co-preferred item.

$$Obj_{cp} = \sum_{(\mathbf{x}, \mathbf{z}, \mathbf{y}) \in C} \frac{1}{2} (P_{\mathbf{x}, \mathbf{z}, \mathbf{y}} - \langle U\mathbf{x}, U\mathbf{z} \rangle V)^{2}$$
$$= \sum_{(\mathbf{x}, \mathbf{z}, \mathbf{y}) \in C} \frac{1}{2} (P_{\mathbf{x}, \mathbf{z}, \mathbf{y}} - \mathbf{x}^{T} U^{T} \operatorname{diag}(V\mathbf{y}) U\mathbf{z})^{2}$$

- And also spectral variant

USER TRIALS

ANU Link Recommender (LinkR)

• Recommend 3 daily links on Facebook

What aspects of religion should atheists (respectfully) adopt? Alain de Botton suggests a "religion for atheists" -- call it Atheism 2.0 -- that incorporates religious forms and traditions to satisfy our human need for connection, ritual and transcendence.

Trials and Algorithms

• Trial 1: Baselines

- SVM (Content-based filtering CBF)
- KNN (Collaborative filtering CF)
- Matchbox MB (CF + CBF)
- Social Matchbox SMB (CBF + CF + Soc. Reg)

• Trial 2: New Objectives

- SMB
- Spectral Reg. variant of SMB Sp. MB
- SMB + Information Diffusion S. Hybrid
- MB + Spectral Copreference Reg. S. CP

LinkR Statistics

Table	#Records	#Records
	(App Users)	(App User
		and Friends)
Users	103	39,850
Column	#Non-empty	#Non-empty
	(App Users)	(App User
		and Friends)
Gender	102	36,401
Birthday	103	27,624

Breakdown	Count (App Users)	Count (App User and Friends)	
Male	73	19,742	
Female	29	16,659	
High School	104	29,503	
College	115	29,223	
Graduate School	56	7733	

App Users	Posts	Tags	Comments	Likes	
Wall	27,955	5,256	15,121	11,033	
Link	3,974		5,757	4,279	
Photo	4,147	22,633	8,677	5,938	
Video	211	2,105	1,687	710	
App Users	Posts	Tags	Comments	Likes	
and Friends					
Wall	3,384,740	912,687	2,152,321	1,555.225	
Link	514 475		693 930	666 631	
	514,475		075,750	000,031	r
Photo	1,098,679	8,407,822	2,978,635	1,960,138	

LinkR Usage Statistics

Trial $1 -$	Aug.	25,	2011	\mathbf{to}	Oct.	13,	2011
-------------	------	-----	-------------	---------------	------	-----	-------------

	SMB	MB	SVM	KNN	Total
Users All	26	26	28	28	108
Users ≥ 10	13	9	13	5	40
Users ≥ 30	9	3	11	3	26
Ratings All	819	526	901	242	2508
Ratings ≥ 10	811	505	896	228	2440
Ratings ≥ 30	737	389	851	182	2159
Clicks All	383	245	413	218	1259

Trial 2 – Oct. 14, 2011 to Feb. 10, 2012

	SMB	Sp.MB	Sp.CP	SHyb.	Total
Users All	27	27	29	28	111
Users ≥ 10	15	11	8	12	46
Users ≥ 30	12	9	5	10	36
Ratings All	1434	882	879	614	3809
Ratings ≥ 10	1411	878	863	602	3754
Ratings ≥ 30	1348	850	802	570	3570
Clicks All	553	320	278	199	1350

RESULTS

Click Behavior

Impact of Popularity

CONCLUSIONS AND FUTURE WORK

Conclusions

- Feature-based social spectral regularization
 - Undeniably the top-performer
 - As good as direct information diffusion features
 - Interactions stronger than co-preferences
 - Or co-preferences harder to optimize?

Conclusions

- Overall
 - Machine learning works!
 - Better than more ad-hoc methods like KNN
 - Power of latent factorization methods
 - Use socially informed regularizers!
 - In general, users who interact a lot have similar preferences!

Future Work

• Are all interactions equal?

- No!
 - Learning predictiveness of fine-grained interactions can do as well as MF, but with simple classifiers!
 - Work in progress...

Special Thanks to

- Doug Aberdeen (Google Zurich) for supporting our Google Grant
- Sally-Ann Williams (Google Sydney) for 100+ pairs of Google flip-flops, which helped attract many users to our study!

THANK YOU !

linkr.anu.edu.au

- More information
- Link to Facebook app
- Contact Us !

Additional Slides

Experimental Design in Retrospect

- Experimental design
 - Originally wanted to do active learning
 - In our Google Grant proposal
 - But with user uptake, difficult to evaluate this
 - Need very active users (only 25% were active)
 - Algorithms trialed can be evaluated for varied usage
 - All data counts, good!
 - But stuck to original experimental design for consistency
 - Hard to statistically compare small user groups
 - If do again, would interleave interactions
 - But main results of Spec. MB fairly sound

Proposal I

 Use interactions to learn latent projection of user and features

$$Obj_{rs} = \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} (S_{\mathbf{x},\mathbf{z}} - \langle U\mathbf{x}, U\mathbf{z} \rangle)^2$$
$$= \sum_{\mathbf{x}} \sum_{\mathbf{z} \in friends(\mathbf{x})} \frac{1}{2} (S_{\mathbf{x},\mathbf{z}} - \mathbf{x}^T U^T U\mathbf{z})^2$$

Individual Link Comments

Individual Link Comments

Comment Type	#	%
not interested	88	36.5%
wrong language	37	15.4%
really liked it!	35	14.5%
bad YouTube	25	10.4%
seen it already	25	10.4%
problem / dead	20	8.3%
outdated	7	2.9%
miscellaneous	4	1.7%

Survey

User Survey Comments want more control over recommendations made (music, blogs, news) want option to see > 3recommendations links need description / context or explanation of recommendation more variety, diversity